

Medicine Lake TMDL Status Assessment

.....

Prepared for Bassett Creek Watershed Management Commission April 17, 2025

Outline

.....

- TMDL assessment study overview
- TMDL summary—expectations for internal and external TP load reductions
- Updated water quality monitoring comparison to MPCA standards
- Aquatic invasive species monitoring/control
- Completed BMPs and TP reductions
- Identified gaps between expected and required TP load reductions
- Recommendations for remaining needed water quality improvements

TMDL Assessment Overview

.....

Watershed

- Seven MS4s
- Plymouth and Medicine Lake are direct; rest indirect
- Plymouth represents 83% of watershed area

Total Maximum Daily Load (TMDL)

- Maximum allowable pollutant load that meets
 water quality standards
 - Pollutant loads assigned to each MS4 (Wasteload Allocation)
 - Internal load and atmospheric deposition

TMDL Summary–expectations for internal and external TP load reductions

.....

TMDL calls for 28% TP load reduction from watershed sources

 Translates to required TP reduction of 1,287 lbs/yr

Internal TP load needs to be controlled at level consistent with 2006

Water Quality Monitoring Comparison to MPCA Standards

.....

10-Year Averages

- TP
 - 55 µg/L
 - Third higher than 40 µg/L standard
- Chl-a
 - 26 µg/L
 - Almost twice as high as 14 μ g/L standard
 - Significant improving trend last 8 years
- Secchi disc transparency
 - 1.98 meters
 - Meets 1.4-meter standard
 - Significant improving trend last 8 years

Most likely delisting scenario

• TP and Secchi disc transparency meet standard

Water Quality Monitoring Comparison to MPCA Standards

......

Hypolimnetic (bottom-water) TP concentrations are indicator of internal load potential

- Hypolimnetic TP concentrations have not changed since the TMDL was completed
- TP concentrations typically increase during the summer, then drop between late-August and early September as lake starts to mix
 - Contributes to deteriorating surface water quality during latter half of summer
- 2023 had two lower TP concentrations in early August, likely in response to weaker stratification and lower lake levels that led to wind mixing and bottom-water entrainment

Water Quality Monitoring—Relationship with Aquatic Invasive Species

.....

Curly-leaf pondweed and Eurasian watermilfoil—presence predates TMDL; CLP coverage is typically > than TMDL threshold

Starry stonewort—discovered in 2018; 13% coverage in 2024

Zebra mussels—discovered in 2017; significant impact since 2020

Water Quality Monitoring—Relationship between AIS and Plankton

.....

Phytoplankton numbers have been trending down

- Consistent with lower Chl-a concentrations
- Green algae more than order of magnitude lower
- Blue-green algae increase later in summer as TP increases

Zebra mussels consume algae and smaller zooplankton; prefer diatoms, green algae, cryptomonads Zebra mussels are leaving fewer algae for largebodied zooplankton, the preferred food for fish

Completed BMPs and TP Load Reductions [P8 Modeling]

.....

Water quality (P8) modeling of post-2006 projects/practices indicates

- Overall TP load reduction is about 400 lbs short of 1,287 lbs per year TMDL requirement
- Combined TP treatment efficiency of all BMPs exceeds 70%, which limits attainability of additional treatment
- BMP TP load reductions are less than monitoring indicates

Table 5-1 Modeled BMP TP Treatment Summary by Watershee	Are	ea
---	-----	----

Watershed	Total TP Removed by BMPs (lbs/yr) ^[1]	Current Overall TP Treatment Efficiency (%)
Plymouth Creek ^[2]	649.4	71
Ridgedale Creek	47.3	70
Medicine Lake Direct	114.0	71
Medicine Lake NE	18.1	76
Medicine Lake North	60.0	74
Total	888.8	72

[1] Increased removal based on model changes documented since 2006 TMDL baseline year

[2] Includes Parkers Lake and Parkers Lake East Area watersheds.

Gaps Between Expected and Required TP Load Reductions [Monitoring]

.....

Plymouth Creek tributary

- Contributes more than 50% of the watershed TP load, based on TMDL modeling
- Station has 23 years of monitoring data
- West Medicine Lake Park Ponds project implemented/functioning by spring of 2010
- Recent monitoring shows significantly improved water quality since BMP implementation

2010

2015

2025

2020

Gaps Between Expected and Required TP Load Reductions [Monitoring]

.....

- Flow and TP loads vary more than TP conc.
- "Average" years compared to 2006
- Recent TP loads are 1,300 lbs/yr (or 50%) lower than 2006—both meet TMDL reduction
- Despite watershed BMPs, lake TP hasn't improved since 2006

Plymouth Creek Phosphorus Load Trends

Recommendations for Remaining Needed Water Quality Improvements

.....

Are more watershed BMPs needed?

- Significant number and scale of BMPs have been implemented since 2006; maintain existing BMPs
- Street sweeping and some BMPs suitable for direct drainage

Lake water quality is unchanged

• Internal phosphorus load is primary cause

Alum treatment is recommended

- Plan for 3 phases; costs likely ranging from \$1.5 to \$2 million
- Perform carp study and feasibility study in advance

Adaptive management recommended for

- Curly-leaf pondweed control—Lake Vegetation Management Plan
- Starry stonewort—continued treatment to minimize spread
- Zebra mussels—currently lacking proven/cost-effect product

Questions??

.....

Greg Wilson

gwilson@barr.com

4300 MarketPointe Drive Minneapolis, MN 55435 Phone: 952.832.2672

TMDL toolkit for MS4 permit compliance

- Overview of models used to meet MS4 TMDL permit requirements
- P8
 - Recommendations and guidance for utilizing P8 to meet TMDL permit requirements
 - Case study for using P8 to meet TMDL permit requirements
 - U of MN P8 training on the use of the P8 software. P8 is a free software package for modeling storm For more information on training, go to this link.
- WINSLAMM
 - Recommendations and guidance for utilizing WINSLAMM to meet TMDL permit requirements
 - Case study for using WINSLAMM to meet TMDL permit requirements
- MIDS (Minimal Impact Design Standards calculator)
 - Recommendations and guidance for utilizing the MIDS calculator to meet TMDL permit requiremen
 - MIDS calculator
 - Case study for using the MIDS calculator to meet TMDL permit requirements
- MPCA Simple Estimator
 - Recommendations and guidance for utilizing the MPCA Simple Estimator to meet TMDL permit requ
 - Guidance and examples for using the MPCA Estimator
 - Case study for using the MPCA Simple Estimator to meet TMDL permit requirements
 - MPCA review of submittals using the MPCA Simple Estimator
 - Default TSS and TP loads for different land use scenarios using the MPCA Simple Estimator

Monitoring

- Recommendations and guidance for utilizing monitoring to meet TMDL permit requirements
- Recommendations and guidance for utilizing lake monitoring to meet TMDL permit requirements
- Recommendations and guidance for utilizing stream monitoring to meet TMDL permit requirement
- Recommendations and guidance for utilizing major stormwater outfall monitoring to meet TMDL pe
- Recommendations and guidance for utilizing stormwater best management practice monitoring to
- Quick guides for using models to meet MS4 TMDL permit requirements
- Case studies for monitoring to meet TMDL permit requirements

MPCA's MS4 Guidance for Assessing TMDL Compliance

.....

P8 Modeling (Section 5) Monitoring (Section 6)

Water Quality Monitoring—Relationship with Aquatic Invasive Species

.....

